Evaluating Data Terms for Variational Multi-frame Super-Resolution

نویسندگان

  • Kireeti Bodduna
  • Joachim Weickert
چکیده

We present the first systematic evaluation of the data terms for multi-frame super-resolution within a variational model. The various data terms are derived by permuting the order of the blur-, downsample-, and warp-operators in the image acquisition model. This yields six different basic models. Our experiments using synthetic images with known ground truth show that two models are preferable: the widely-used warpblur-downsample model that is physically plausible if atmospheric blur is negligible, and the hardly considered blur-warp-downsample model. We show that the quality of motion estimation plays the decisive role on which of these two models works best: While the classic warp-blurdownsample model requires optimal motion estimation, the rarely-used blur-warp-downsample model should be prefered in practically relevant scenarios when motion estimation is suboptimal. This confirms a widely ignored result by Wang and Qi (2004). Last but not least, we propose a new modification of the blur-warp-downsample model that offers a very significant speed-up without substantial loss in the reconstruction quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

A Nuclear-norm Model for Multi-Frame Super-Resolution Reconstruction from Video Clips

We propose a variational approach to obtain superresolution images from multiple low-resolution frames extracted from video clips. First the displacement between the lowresolution frames and the reference frame are computed by an optical flow algorithm. Then a low-rank model is used to construct the reference frame in high-resolution by incorporating the information of the low-resolution frames...

متن کامل

Multi-frame Super Resolution for Improving Vehicle Licence Plate Recognition

License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...

متن کامل

Video Upscaling Using Variational Methods

In this thesis we do image sequence upscaling using variational methods. We have developed, implemented and tested the three main elements of the upscaling part of a video processor using variational methods plus a non-variational preprocessing method detecting the scan format of the input video. The three upscalings needed are deinterlacing (DI), which is creating the never recorded every othe...

متن کامل

Light Field Super-Resolution Via Graph-Based Regularization

Light field cameras can capture the 3D information in a scene with a single shot. This special feature makes light field cameras very appealing for a variety of applications: from the popular post-capture refocus, to depth estimation and imagebased rendering. However, light field cameras suffer by design from strong limitations in their spatial resolution, which should therefore be augmented by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017